首页 | 本学科首页   官方微博 | 高级检索  
     


Simulations of calcium channel block by trivalent cations: Gd competes with permeant ions for the selectivity filter
Authors:Attila Malasics,Mó  nika Valiskó  ,Dirk Gillespie
Affiliation:
  • a Department of Physical Chemistry, University of Pannonia, Veszprém, Hungary
  • b Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
  • c Department of Molecular Biophysics and Physiology, Section of Cellular Signaling, Rush University Medical Center, Chicago, IL, USA
  • Abstract:Current through L-type calcium channels (CaV1.2 or dihydropyridine receptor) can be blocked by micromolar concentrations of trivalent cations like the lanthanide gadolinium (Gd3+). It has been proposed that trivalent block is due to ions competing for a binding site in both the open and closed configuration, but possibly with different trivalent affinities. Here, we corroborate this general view of trivalent block by computing conductance of a model L-type calcium channel. The model qualitatively reproduces the Gd3+ concentration dependence and the effect that substantially more Gd3+ is required to produce similar block in the presence of Sr2+ (compared to Ba2+) and even more in the presence of Ca2+. Trivalent block is explained in this model by cations binding in the selectivity filter with the charge/space competition mechanism. This is the same mechanism that in the model channel governs other selectivity properties. Specifically, selectivity is determined by the combination of ions that most effectively screen the negative glutamates of the protein while finding space in the midst of the closely packed carboxylate groups of the glutamate residues.
    Keywords:L-type calcium channel   Dihydropyridine receptor   Block   Permeation   Selectivity
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号