首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Inhibition of the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F by carbon monoxide: An FTIR and EPR spectroscopic study
Authors:Maria-Eirini Pandelia  Wolfgang Lubitz
Institution:Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D 45470, Mülheim a.d. Ruhr, Germany
Abstract:X-ray crystallographic studies Ogata et al., J. Am. Chem. Soc. 124 (2002) 11628-11635] have shown that carbon monoxide binds to the nickel ion at the active site of the NiFe] hydrogenase from Desulfovibriovulgaris Miyazaki F and inhibits its catalytic function. In the present work spectroscopic aspects of the CO inhibition for this bacterial organism are reported for the first time and enable a direct comparison with the existing crystallographic data. The binding affinity of each specific redox state for CO is probed by FTIR spectro-electrochemistry. It is shown that only the physiological state Ni-SIa reacts with CO. The CO-inhibited product state is EPR-silent (Ni2+) and exists in two forms, Ni-SCO and Ni-SCOred. At very negative potentials, the exogenous CO is electrochemically detached from the active site and the active Ni-R states are obtained. At temperatures below 100 K, photodissociation of the extrinsic CO from the Ni-SCO state results in Ni-SIa that is identified to be the only light-induced state. In the dark, rebinding of CO takes place; the recombination rate constants are of biexponential character and the activation barrier is determined to be approximately 9 kJ mol−1. In addition, formation of a paramagnetic CO-inhibited state (Ni-CO) was observed that results from the interaction of carbon monoxide with the Ni-L state. It is proposed that the nickel in Ni-CO is in a formal monovalent state (Ni1+).
Keywords:[NiFe] hydrogenase  Desulfovibrio vulgaris  Carbon monoxide inhibition  Spectro-electrochemistry  Rapid-scan FTIR  EPR
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号