首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecularly imprinted cryogel for L-glutamic acid separation
Authors:Aydo?an Cemil  Andaç Muge  Bayram Engin  Say R?dvan  Denizli Adil
Institution:Dept. of Chemistry, Biochemistry Div., Hacettepe University, 06532 Beytepe, Ankara, Turkey.
Abstract:A molecular recognition based L-glutamic acid (L-GLU) imprinted cryogel was prepared for L-GLU separation via chromatographic applications. The novel functional monomer N-methacryloyl-(L)-glutamic acid-Fe(3+) (MAGA-Fe(3+) ) was synthesized to be complex with L-GLU. The L-GLU imprinted cryogel was prepared by free radical polymerization under semifrozen conditions in the presence of a monomer-template complex MAGA-Fe(3+) -L-GLU. The binding mechanism of MAGA-Fe(3+) and L-GLU was characterized by Fourier transform infrared (FTIR) spectroscopy in detail. FTIR analyses on the synthesized MAGA-Fe(3+) -GLU complex reveals bridging bidentate and monodentate binding modes of Fe(3+) in complex with the carboxylate groups of the glutamate residues. The template L-GLU could be reversibly detached from the cryogel to form the template cavities using a 100 mM solution of HNO(3) . The amount of adsorbed L-GLU was detected using the phenyl isothiocyanate method. The L-GLU adsorption capacity of the cryogel decreased drastically from 11.3 to 6.4 μmol g(-1) as the flow rate increased from 0.5 to 4.0 mL min(-1) . The adsorption onto the L-GLU imprinted cryogel was highly pH dependent due to electrostatic interaction between the L-GLU and MAGA-Fe(3+) . The PHEMAGA-Fe(3+) -GLU cryogel exhibited high selectivity to the corresponding guest amino acids (i.e., D-GLU, L-ASN, L-GLN, L-, and D-ASP). Finally, the L-GLU imprinted cryogel was recovered and reused many times, with no significant decrease in their adsorption capacities.
Keywords:L‐GLU separation  cryogel  molecular imprinting  affinity binding
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号