首页 | 本学科首页   官方微博 | 高级检索  
     

基于智能计算噬菌体的细菌宿主范围预测
引用本文:王博宇,杨孜孜,SUN Fengzhu,王颖. 基于智能计算噬菌体的细菌宿主范围预测[J]. 微生物学报, 2024, 64(2): 344-363
作者姓名:王博宇  杨孜孜  SUN Fengzhu  王颖
作者单位:厦门大学自动化系, 福建 厦门 361000;厦门大学国家健康医疗大数据厦门研究院, 福建 厦门 361000;美国南加州大学量化与计算生物系, 加利福尼亚州 洛杉矶 CA90089;厦门大学自动化系, 福建 厦门 361000;厦门大学国家健康医疗大数据厦门研究院, 福建 厦门 361000;厦门市大数据智能分析与决策重点实验室, 福建 厦门 361000
基金项目:国家自然科学基金(62173282);国家重点研发计划(2018YFD0901401)
摘    要:针对噬菌体的细菌宿主范围预测对于深入理解噬菌体及将其作为抗生素替代用于生物疗法具有重要意义。传统生物实验方法确定噬菌体的细菌宿主范围受到极有限的噬菌体可培养性和严苛的培养条件限制,而高通量测序技术所提供的海量基因组或宏基因组序列提供了噬菌体及细菌重要的序列信息,因此智能计算为预测噬菌体的细菌宿主范围提供了可行方法。本文从智能计算的角度对噬菌体的细菌宿主范围预测研究进行系统梳理,从噬菌体感染细菌的过程入手,描述配对预测模型所依赖的特征及其生物合理性,归纳宿主范围预测的智能模型、建模原理及预测策略,总结建模训练和评估所依赖的参考数据集与真实数据及评价指标。本文特别注意挖掘和分析各信息手段、模型、方法其背后的生物合理性及其依赖的生物机理。本综述期望推动基于智能算法的噬菌体的细菌宿主范围预测研究发展,并探索将生物先验结合人工智能实现噬菌体侵袭细菌宿主的本质机理推断,同时也为基于噬菌体的临床应用提供参考与借鉴。

关 键 词:微生物组  噬菌体-宿主相互作用  预测模型  智能算法  机器学习  神经网络
收稿时间:2023-06-15
修稿时间:2023-08-17

Progress in predicting bacteriophage host ranges by intelligent computing
WANG Boyu,YANG Zizi,SUN Fengzhu,WANG Ying. Progress in predicting bacteriophage host ranges by intelligent computing[J]. Acta microbiologica Sinica, 2024, 64(2): 344-363
Authors:WANG Boyu  YANG Zizi  SUN Fengzhu  WANG Ying
Affiliation:Department of Automation, Xiamen University, Xiamen 361000, Fujian, China;National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361000, Fujian, China;Department of Quantitative and Computational Biology, University of Southern California, Los Angeles CA90089, California, USA; Department of Automation, Xiamen University, Xiamen 361000, Fujian, China;National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361000, Fujian, China;Xiamen Key Laboratory of Big Data Intelligent Analysis and Decision, Xiamen 361000, Fujian, China
Abstract:The prediction of bacteriophage host ranges is of great significance for the basic research and clinical application of bacteriophages. The conventional biological experimental methods are limited by the poor culturability of bacteriophages and strict cultivation conditions. The availability of massive genome or metagenome sequencing data provides the sequence signature of bacteriophages and bacteria. Therefore, intelligent computing serves as a feasible way to predict bacteriophage host ranges. This paper systematically reviews the studies about intelligent computing-based prediction of bacteriophage host ranges. Starting from the process of bacteriophage infecting bacteria, we describe the feature source and biological rationality of prediction models, analyze the typical intelligent models and their prediction principles, and list all the reference datasets, real-world datasets, and evaluation indicators. The review aims to improve the understanding on the mechanism of bacteriophages in invading bacterial hosts and promote the usage of bacteriophages as antibiotic substitutes in biological therapy.
Keywords:microbiome  bacteriophage-host interactions  prediction model  intelligent computing  machine learning  neural network
点击此处可从《微生物学报》浏览原始摘要信息
点击此处可从《微生物学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号