首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Transition state chirality and role of the vicinal hydroxyl in the ribosomal peptidyl transferase reaction
Authors:Huang Kevin S  Carrasco Nicolas  Pfund Emmanuel  Strobel Scott A
Institution:Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA.
Abstract:The ribosomal peptidyl transferase is a biologically essential catalyst responsible for protein synthesis. The reaction is expected to proceed through a transition state approaching tetrahedral geometry with a specific chirality. To establish that stereospecificity, we synthesized two diastereomers of a transition state inhibitor with mimics for each of the four ligands around the reactive chiral center. Preferential binding of the inhibitor that mimics a transition state with S chirality establishes the spatial position of the nascent peptide and the oxyanion and places the amine near the critical A76 2'-OH group on the P-site tRNA. Another inhibitor series with 2'-NH 2 and 2'-SH substitutions at the critical 2'-OH group was used to test the neutrality of the 2'-OH group as predicted if the hydroxyl functions as a proton shuttle in the transition state. The lack of significant pH-dependent binding by these inhibitors argues that the 2'-OH group remains neutral in the transition state. Both of these observations are consistent with a proton shuttle mechanism for the peptidyl transferase reaction.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号