首页 | 本学科首页   官方微博 | 高级检索  
     


Oxoperoxo molybdenum(VI)- and tungsten(VI) complexes with 1-(2′-hydroxyphenyl) ethanone oxime: Synthesis, structure and catalytic uses in the oxidation of olefins, alcohols, sulfides and amines using H2O2 as a terminal oxidant
Authors:Narottam Gharah  Alok K. Mukherjee
Affiliation:a Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700 032, India
b Department of Physics, Jadavpur University, Kolkata, West Bengal 700 032, India
Abstract:High yield synthesis of two new oxodiperoxo-molybdate, PPh4[MoO(O2)2(HPEOH)] (1), and -tungstate, PPh4[WO(O2)2(HPEOH)] (2), complexes with 1-(2′-hydroxyphenyl) ethanone oxime (HPEOH2) as organic ligand has been achieved by adding methanol solution of the ligand to the pale-yellow solution obtained by dissolving molybdic-/tungstic-acid (freshly prepared) in hydrogen peroxide and precipitating the complexes using tetraphenylphosphonium chloride. The orange-yellow complexes have been characterized by elemental analysis, IR, 1H NMR, UV-Vis spectroscopy and finally by X-ray structure analysis. Both the complexes function as facile olefin epoxidation catalysts with hydrogen peroxide as terminal oxidant and bicarbonate as a co-catalyst at room temperature. Catalytic potentiality of 1 and 2 is also exhibited in the case of oxidation of alcohols, amines and sulfides. The catalysts are very much efficient especially in olefin epoxidation giving high yield, TON (turnover number) and TOF (turnover frequency). The method described is environmentally benign and cost-effective in all the cases.
Keywords:Synthesis   Crystal structure   Catalysis   Epoxidation   Oxoperoxo molybdenum and tungsten   Alcohol, amine and sulfide oxidation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号