首页 | 本学科首页   官方微博 | 高级检索  
     


Metal-induced point defects in DNA: model and mechanisms
Authors:Bregadze Vasil G  Gelagutashvili Eteri S  Tsakadze Ketevan J  Melikishvili Sophia Z
Affiliation:Andronikashvili Institute of Physics, 6 Tamarashvili Street, Tbilisi 0177, Georgia. breg@iphac.ge
Abstract:The aim of this work was to study the role of H3O+ and transition-metal (TM) ions in keto-enol and amino-imino tautomeric transitions in DNA base pairs and depurination. In this regard, we discuss the thermodynamic model of ion-DNA interactions and UV display of double-proton transfer (DPT) in GC. The probabilities and energies of rare tautomeric forms of GC pairs in DNA induced by H3O+ and TMwere determined being in the range from0.02 (forMg2+) to 1 ( forCu2+), and from 0 kcal/m (for Cu2+) to 2.3 kcal/m (for Mg2+), respectively. It was shown that 3'ACC5'/5'TGG3' site of DNA double helix, which corresponds to the only triplet 5'UGG3' of RNA that codes the most valuable amino acid tryptophan, is a good target for TM ions to attack. It was also shown that the only way to obtain the tryptophan-coding 5'UGG3' triplet in RNA via transition-type G --> A point mutation caused by TM ions is their interaction with the site of a DNA double helix, which corresponds to 5'CGG3' triplet of RNA that codes arginine.
Keywords:DNA  Point mutations  Metal‐induced point mutations  Double proton transfer  Ion–DNA interactions  Formation energy  Point defects in DNA
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号