首页 | 本学科首页   官方微博 | 高级检索  
     


Nanodisc-Incorporated Hemagglutinin Provides Protective Immunity against Influenza Virus Infection
Authors:Palash Bhattacharya  Steve Grimme  Balaji Ganesh  Anupama Gopisetty  Jian Rong Sheng  Osvaldo Martinez  Shankar Jayarama  Michael Artinger  Matthew Meriggioli  Bellur S. Prabhakar
Affiliation:Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois,1. Nanodisc Inc., Enterprise Works Room 207, 60 Hazelwood, Champaign, Illinois 61820,2. Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, Illinois,3. Department of Microbiology, Mount Sinai School of Medicine, New York, New York4.
Abstract:Every year, influenza virus infection causes significant mortality and morbidity in human populations. Although egg-based inactivated viral vaccines are available, their effectiveness depends on the correct prediction of the circulating viral strains and is limited by the time constraint of the manufacturing process. Recombinant subunit vaccines are easier to manufacture with a relatively short lead time but are limited in their efficacy partly because the purified recombinant membrane proteins in the soluble form most likely do not retain their native membrane-bound structure. Nanodisc (ND) particles are soluble, stable, and reproducibly prepared discoid shaped nanoscale structures that contain a discrete lipid bilayer bound by two amphipathic scaffold proteins. Because ND particles permit the functional reconstitution of membrane/envelope proteins, we incorporated recombinant hemagglutinin (HA) from influenza virus strain A/New Caledonia/20/99 (H1N1) into NDs and investigated their potential to elicit an immune response to HA and confer immunity to influenza virus challenge relative to the commercial vaccines Fluzone and FluMist. HA-ND vaccination induced a robust anti-HA antibody response consisting of predominantly the immunoglobulin G1 (IgG1) subclass and a high hemagglutination inhibition titer. Intranasal immunization with HA-ND induced an anti-HA IgA response in nasal passages. HA-ND vaccination conferred protection that was comparable to that of Fluzone and FluMist against challenge with influenza virus strain A/Puerto Rico/8/1934 (H1N1).The influenza A virus-type viral genome encodes 11 proteins including hemagglutinin (HA) and neuraminidase (NA). HA is important in virus transmission and is also a major determinant of host range (16). NA prevents viral aggregation and helps in the release of new viruses from the infected cell (25). These glycoproteins are the principal antigens against which humoral immune responses of the host are directed. Vaccination has been accepted as the most effective method of preventing influenza virus. Current licensed vaccines against influenza virus include conventional inactivated virus vaccine, live-attenuated vaccine, or inactivated “split-virus” vaccines, all grown in embryonated chicken eggs. Influenza virus vaccines may contain residual egg-derived antigens, which is a risk factor for persons with hypersensitivity to eggs. In the case of live-attenuated vaccines that are delivered by the mucosal route, there are several potential safety concerns including the possibility that the vaccine strain could undergo spontaneous genetic change and in a rare case of simultaneous infection with another influenza virus could undergo antigenic shift. These factors are of special concern for children and the elderly, who are the primary populations at risk for influenza virus infection (9). Therefore, there is a continuing need for developing more efficacious and safer vaccines.Apart from licensed vaccines, a number of different vaccine formulations including soluble glycoproteins, virus-like particles, and subunit vaccines (6, 9, 14) with various efficacies have been developed. Recombinant glycoprotein vaccines offer many distinct advantages, including cost, the possibility of adapting them to rapidly changing strains within a short time, and independence from egg-based formulations. In experimental setups, recombinant HA (rHA) and recombinant NA have provided protection against lethal challenge to mice (18, 27). The safety, immunogenicity, and efficacy of trivalent rHA vaccines have been established (26), and a potential trivalent HA vaccine (FluBlok; Protein Sciences Corporation) is currently in phase III clinical trials.Some rHA-based vaccines elicit high titers of anti-HA antibodies. However, these antibodies do not necessarily possess a high capacity for virus neutralization. This apparent discrepancy likely results from the use of soluble HA protein that may not accurately mimic the native structure of the membrane-embedded glycoprotein on the viral envelope for immunization. This could result in a robust antibody response with a limited ability to react with “native epitopes.” This notion is supported by data from previously reported studies that indicated that antigens expressed in their native three-dimensional conformation can elicit a more effective antibody response than proteins in their nonnative forms (19). Therefore, we investigated whether rHA presented in a lipid-bilayer-embedded formulation would elicit a potent neutralizing antibody response.The Nanodisc (ND) system was developed as a novel method for functionally reconstituting membrane proteins into soluble nanoscale lipid bilayers (3, 4, 12, 22). NDs are robust, reproducible, and monodisperse discoidal particles 5.5 nm high and nominally 10 nm in diameter that are formed via a self-assembly process. ND particles contain two copies of an alpha-helical, amphipathic protein, termed membrane scaffold protein (MSP), which encircles a lipid bilayer in a “belt-like” fashion (Fig. (Fig.1a).1a). A mixture of phospholipids and MSP are placed in a nonequilibrium solubilized state, for instance, using detergent or high hydrostatic pressure, and the system is then allowed to approach equilibrium by the gentle removal of the perturbant. This initiates a process of self-assembly, wherein the phospholipids and MSP find each other and generate a discoidal phospholipid bilayer encircled by the MSP. The resulting nanostructures represent a highly stable and homogeneous population with an aqueous solubility in the millimolar range (11).Open in a separate windowFIG. 1.Construction of HA-NDs. (a) Schematic showing an ND particle that contains a phospholipid bilayer encircled by membrane scaffold proteins (left) (5) and the same ND particle with an embedded transmembrane protein (right) (17). (b) HA-ND assemblies were first purified by Ni2+ affinity chromatography. (Top left) Silver-stained SDS-PAGE showing flowthrough, wash, and elution of HA-ND assembly mix over a Ni-nitrilotriacetic acid column (FT1 and FT2 are flowthrough, and the eluate contains the eluted protein). Arrows show the positions of the 72-kDa HA band and the 25-kDa MSPs. (Top right) Anti-HA Western blotting of the same SDS-PAGE gel. Depending on the quality of purification, a certain fraction of full-length 72-kDa rHA (HA0) can exist as proteolytically cleaved HA1 (∼50-kDa) and HA2 (∼28-kDa) subunits. (Bottom left) Ni2+ column eluates were further purified by SEC. Silver-stained SDS-PAGE gel shows size-based fractionation of Ni2+ column eluate. The numbers at the bottom correspond to the fractions collected. The MSP amounts are largest at fractions 27 to 30, showing that empty NDs eluted at those fractions. (Bottom right) Anti-HA Western blotting of the same SDS-PAGE gel showing that HA-ND assemblies eluted mainly between fractions 18 and 26. (c) Elution profile of HA-ND following SEC separation. The elution times for protein standards used for calibration are indicated at the top. The control profile for empty NDs is superimposed. HA-ND assemblies have a shorter retention time than empty NDs. inj, injection. (d) HA-ND assemblies from different SEC fractions separate as discrete-sized molecules upon native PAGE separation. Silver staining (left) and anti-HA Western blotting (right) of native PAGE gels from size exclusion fractions show different HA polymers contained in NDs. Earlier fractions are rich in higher-polymeric forms of HA, while later fractions are richer in monomeric HA. Control HA was loaded in the last well to the right in both cases.The value of the ND self-assembly process is that one can simply and reproducibly incorporate membrane proteins into these structures. This is accomplished by including the membrane protein in the initial mixture of MSP, lipid, and detergent prior to the initiation of the self-assembly process. An incorporated membrane protein then finds itself in a native-like environment with stability and activity normally found in vivo. By using phospholipids with different chemical characteristics (charge, degree of unsaturation, and length of acyl chains), the bilayer environment can be optimized to accommodate functional requirements. Furthermore, larger scaffold proteins, which in turn create a larger-diameter particle, can be employed to incorporate multimers or membrane protein complexes. Numerous membrane proteins from the three major classes-integral, tethered, and embedded (including monomers and multimers)-in the lipid bilayer environment created by NDs have been studied (2-5, 8, 10, 13, 20, 23). Since the ND system creates a stable bilayer environment that mimics that encountered by a membrane protein in the cell membrane, membrane proteins display normal folding, native ligand binding kinetics, and intact signaling activity (1, 3, 5, 8, 10, 13, 17, 23).In this study, we successfully incorporated recombinant baculovirus-derived HA into NDs (HA-ND) and compared its efficacy to induce a relevant immune response and confer protection against influenza virus challenge with those of existing licensed vaccines by using a mouse model.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号