首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Characterization of Endoplasmic Reticulum-Localized UDP-d-Galactose: Hydroxyproline O-Galactosyltransferase Using Synthetic Peptide Substrates in Arabidopsis
Authors:Takuji Oka  Fumie Saito  Yoh-ichi Shimma  Takehiko Yoko-o  Yoshiyuki Nomura  Ken Matsuoka  Yoshifumi Jigami
Institution:Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305–8566, Japan (T.O., F.S., Y.S., T.Y., Y.J.); Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto 860–0082, Japan (Y.N.); and Laboratory of Plant Nutrition, Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka 812–8581, Japan (K.M.)
Abstract:We characterized peptidyl hydroxyproline (Hyp) O-galactosyltransferase (HGT), which is the initial enzyme in the arabinogalactan biosynthetic pathway. An in vitro assay of HGT activity was established using chemically synthesized fluorescent peptides as acceptor substrates and extracts from Arabidopsis (Arabidopsis thaliana) T87 cells as a source of crude enzyme. The galactose residue transferred to the peptide could be detected by high-performance liquid chromatography and matrix-assisted laser desorption-ionization time-of-flight mass spectrometry analyses. HGT required a divalent cation of manganese for maximal activity and consumed UDP-d-galactose as a sugar donor. HGT exhibited an optimal pH range of pH 7.0 to 8.0 and an optimal temperature of 35°C. The favorable substrates for the activity seemed to be peptides containing two alternating imino acid residues including at least one acceptor Hyp residue, although a peptide with single Hyp residue without any other imino acids also functioned as a substrate. The results of sucrose density gradient centrifugation revealed that the cellular localization of HGT activity is identical to those of endoplasmic reticulum markers such as Sec61 and Bip, indicating that HGT is predominantly localized to the endoplasmic reticulum. To our knowledge, this is the first characterization of HGT, and the data provide evidence that arabinogalactan biosynthesis occurs in the protein transport pathway.O-glycosylation is the addition of a sugar to hydroxy amino acids such as Thr, Ser, Hyp, Hyl, or Tyr (Lehle et al., 2006). This type of protein modification occurs in many organisms to modify a large variety of proteins. Several types of sugars can be linked to proteins via O-glycosylation, including Man, N-acetylgalactosamine, Glc, Xyl, N-acetylglucosamine, Fuc, Gal, and arabinofuranose (Araf). In addition, elongation of the added sugar residues yields a large variety of oligo- and polysaccharide extensions on the substrate proteins. These modifications are known to play important roles in various phenomena, including pathways required to maintain biological systems and basic cellular functions.Structural analysis of oligo- and polysaccharides in plant cell walls has revealed the presence of three types of O-linked structures, Gal-O-Hyp, Araf-O-Hyp, and Gal-O-Ser (Kieliszewski and Shpak, 2001; Seifert and Roberts, 2007). A part of these three structures has been found on proteins in the super family that includes arabinogalactan protein (AGP) and extensin, which are localized to the cell surface. AGPs contain O-linked arabinogalactan oligo- or polysaccharides attached to Hyp residues (Gal-O-Hyp). It is known that arabinogalactan polysaccharides mainly consist of β-1,3 linkages of Gal polymers (Seifert and Roberts, 2007). Extensin contains short arabino-oligosaccharide chains attached to Hyp residues (Araf-O-Hyp) and single Gal residues linked to Ser residues (Gal-O-Ser). It has been suggested that these O-linked structures play an important role in many stages of growth and development in plants, including signaling, embryogenesis, and programmed cell death (Knox, 2006; Seifert and Roberts, 2007). However, our understanding of the biosynthesis of these O-linked structures is limited at present.Shpak et al. described a novel strategy to elucidate O-glycosylation of AGPs via introduction of synthetic genes encoding a protein substrate of glycosyltransferases into plant cells (Shpak et al., 1999; Estevez et al., 2006). This strategy provided good evidence for the substrate specificities of Hyp O-galactosyltransferase (HGT). Hyp galactosylation occurs on clustered noncontiguous Hyp residues such as Xaa-Hyp-Xaa-Hyp repeats of AGPs (where Xaa is any amino acid except Hyp; Tan et al., 2003). However, the arabinogalactosylation site is not limited to clustered noncontiguous Hyp residues, as isolated Hyp residues with appropriate surrounding sequences can be modified with arabinogalactan (Matsuoka et al., 1995; Shimizu et al., 2005). Therefore, the mechanism of glycosylation to Hyp residues seems complex in plants, while we have little information about the glycosyltransferase(s) involved in arabinogalactan biosynthesis. To examine the enzymatic properties and to identify genes involved in arabinogalactan biosynthesis, we first attempted to establish an in vitro assay for HGT activity, which catalyzes the initial step in arabinogalactan biosynthesis in plants.Here, we report a novel assay for HGT activity based on the use of endoplasmic reticulum (ER)-enriched cell lysates extracted from Arabidopsis (Arabidopsis thaliana) T87 cells as a source of the enzyme and chemically synthesized fluorescent peptides as enzyme substrates. The method enabled us to characterize the enzymatic properties of HGT and to determine the localization of HGT in Arabidopsis cells. Properties of the enzyme and the usefulness of our assay for various studies are discussed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号