Abstract: | Gene expression during murine spermatogenesis has been studied using highly enriched populations of cells obtained by velocity sedimentation at unit gravity and further purified by density gradient centrifugation through Percoll. Polypeptides whose synthesis was directed by total cytoplasmic RNA from round spermatids, pachytene spermatocytes, primitive type A spermatogonia, and Sertoli cells in cell-free translation systems have been compared by two-dimensional polyacrylamide gel electrophoresis, followed by fluorography. At the level of detection provided by the electrophoretic methods used, each population of cells contained mRNAs encoding over 200 polypeptides, many of which were present in high abundance in all four cell types. However, for each cell type examined, a minimum of 5-10% of these polypeptides appear to be either specific to or greatly enriched within a particular cell type. Analysis of the polysomal and nonpolysomal cell fractions from pachytene spermatocytes and round spermatids revealed that the two compartments share many identical mRNAs but specific mRNAs are selectively compartmentalized between the cell fractions and between the two cell types. Movement between compartments was seen; e.g., some polypeptides encoded by mRNA found primarily in the nonpolysomal fraction of pachytene cells were later seen in the polysomal fraction from round spermatids. Virtually every other combination was also observed. These results suggest that the control of gene expression at the level of selective production of mRNA and selective utilization of mRNA are among the mechanisms involved in regulation of spermatogenic cell differentiation. |