首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Solid-solid interface adsorption of proteins and enzymes in nanophase-separated amphiphilic conetworks
Authors:Dech Stephan  Cramer Tobias  Ladisch Reinhild  Bruns Nico  Tiller Joerg C
Institution:Chair of Biomaterials and Polymer Science, Department of Bio- and Chemical Engineering, TU Dortmund, Dortmund, Germany.
Abstract:Amphiphilic polymer conetworks (APCNs) are materials with a very large interface between their hydrophilic and hydrophobic phases due to their nanophase-separated morphologies. Proteins were found to enrich in APCNs by up to 2 orders of magnitude when incubated in aqueous protein solutions, raising the question of the driving force of protein uptake into APCNs. The loading of poly(2-hydroxyethyl acrylate)-linked by-poly(dimethylsiloxane) (PHEA-l-PDMS) with heme proteins (myoglobin, horseradish peroxidase, hemoglobin) and lipases was studied under variation of parameters such as incubation time, pH, concentration of the protein solution, and conetwork composition. Adsorption of enzymes to the uncharged interface is the main reason for protein uptake, resulting in protein loading of up to 23 wt %. Experimental results were supported by computation of electrostatic potential maps of a lipase, indicating that hydrophobic patches are responsible for the adsorption to the interface. The findings underscore the potential of enzyme-loaded APCNs in biocatalysis and as sensors.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号