首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Pre-steady-state measurement of intrinsic secondary tritium isotope effects associated with the homolysis of adenosylcobalamin and the formation of 5'-deoxyadensosine in glutamate mutase
Authors:Cheng Mou-Chi  Marsh E Neil G
Institution:Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA.
Abstract:Glutamate mutase is one of a group of adenosylcobalamin-dependent enzymes that catalyze a variety of reactions that proceed through organic radical intermediates generated by homolytic fission of coenzyme's unique cobalt-carbon bond. For all the enzymes that have been examined, the homolysis step is kinetically indistinguishable from abstraction of hydrogen from the substrate (or protein), implying that deoxyadenosyl radical is formed only as a fleeting intermediate. To examine how these two steps are coupled together, we have used pre-steady-state, rapid quench techniques to measure the alpha-secondary tritium isotope effect associated with the formation of 5'-deoxyadenosine when the enzyme is reacted with 5'-(3)H]-adenosylcobalamin and L-glutamate. Surprisingly, a large inverse equilibrium isotope effect of 0.72 +/- 0.04 was found for the overall reaction, indicating that the 5'-C-H bonds become significantly stiffer on going from adenosylcobalamin to 5'-deoxyadenosine, even though the 5'-carbon remains formally sp(3) hybridized. The kinetic isotope effect for the formation of 5'-deoxyadenosine was 0.76 +/- 0.02, which suggests a late transition state for the reaction.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号