首页 | 本学科首页   官方微博 | 高级检索  
     


Double blind test of magnetic field effects on neurite outgrowth
Authors:C. F. Blackman  J. P. Blanchard  S. G. Benane  D. E. House  J. A. Elder
Abstract:Previous work reported that nerve growth factor-stimulated neurite outgrowth in PC-12 cells could be altered by exposure to parallel alternating current (AC) and direct current (DC) magnetic fields under a variety of exposure conditions, producing results that are consistent with the predictions of the ion parametric resonance (IPR) model. The credibility of these results, considered extraordinary by some scientists, could be strengthened if the cell response were found to persist under alternate assay conditions. We replaced part of our standard assay procedure with a double blind procedure. This new procedure obscured 1) whether a particular set of dishes of cells was exposed or not, and 2) which individual dish was in which exposure system. The goal was to determine whether the previously observed responses of PC-12 cells to magnetic fields would be sufficiently robust to decode the imposed blinding, thereby removing any question of experimenter bias in reported results. We placed three coded dishes of cells in each of two otherwise identical exposure systems, one not energized and one energized to produce exposure conditions predicted to maximally suppress neurite outgrowth (Bdc of 36.6 μT, parallel 45 Hz AC of 23.8 μT rms). Each of the six dishes were recoded before assay to further obscure the exposure identity of any individual dish. The combined results of four distinct runs of these double blind experiments unequivocally demonstrated that 1) there was a clear, distinctive, repeatable consistency with the actual energization of the exposure systems and location of each dish, and with the predictions of the IPR model; 2) only the explicitly stated experimental variables influenced the experiment; and 3) the reported response of the cells was very improbably due to chance (P = .000024). Bioelectromagnetics 19:204–209, 1998. © 1998 Wiley-Liss, Inc.
  • 1 This article was prepared by a group consisting of both United States government employees and non-United States government employees, and as such is subject to 17 U.S.C. Sec. 105.
  • Keywords:IPR model  nerve growth factor  static magnetic field  PC-12 cells
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号