首页 | 本学科首页   官方微博 | 高级检索  
     


Intracerebroventricular injection of mu- and delta-opiate receptor antagonists block 60 Hz magnetic field-induced decreases in cholinergic activity in the frontal cortex and hippocampus of the rat
Authors:Henry Lai  Monserrat Carino
Abstract:In previous research, we have found that acute exposure to a 60 Hz magnetic field decreased cholinergic activity in the frontal cortex and hippocampus of the rat as measured by sodium-dependent high-affinity choline uptake activity. We concluded that the effect was mediated by endogenous opioids inside the brain because it could be blocked by pretreatment of rats before magnetic field exposure with the opiate antagonist naltrexone, but not by the peripheral antagonist naloxone methiodide. In the present study, the involvement of opiate receptor subtypes was investigated. Rats were pretreated by intracerebroventricular injection of the mu-opiate receptor antagonist, β-funaltrexamine, or the delta-opiate receptor antagonist, naltrindole, before exposure to a 60 Hz magnetic field (2 mT, 1 hour). It was found that the effects of magnetic field on high-affinity choline uptake in the frontal cortex and hippocampus were blocked by the drug treatments. These data indicate that both mu- and delta-opiate receptors in the brain are involved in the magnetic field-induced decreases in cholinergic activity in the frontal cortex and hippocampus of the rat. Bioelectromagnetics 19:432–437, 1998. © 1998 Wiley-Liss, Inc.
Keywords:60 Hz magnetic field  cholinergic activity  frontal cortex  hippocampus  opiate receptor subtypes
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号