首页 | 本学科首页   官方微博 | 高级检索  
     


Polynomial model approach for resynchronization analysis of cell-cycle gene expression data
Authors:Qiu Peng  Wang Z Jane  Liu K J Ray
Affiliation:Department of Electrical and Computer Engineering, University of Maryland, College Park, USA. qiupeng@umd.edu
Abstract:MOTIVATION: Identification of genes expressed in a cell-cycle-specific periodical manner is of great interest to understand cyclic systems which play a critical role in many biological processes. However, identification of cell-cycle regulated genes by raw microarray gene expression data directly is complicated by the factor of synchronization loss, thus remains a challenging problem. Decomposing the expression measurements and extracting synchronized expression will allow to better represent the single-cell behavior and improve the accuracy in identifying periodically expressed genes. RESULTS: In this paper, we propose a resynchronization-based algorithm for identifying cell-cycle-related genes. We introduce a synchronization loss model by modeling the gene expression measurements as a superposition of different cell populations growing at different rates. The underlying expression profile is then reconstructed through resynchronization and is further fitted to the measurements in order to identify periodically expressed genes. Results from both simulations and real microarray data show that the proposed scheme is promising for identifying cyclic genes and revealing underlying gene expression profiles. AVAILABILITY: Contact the authors. SUPPLEMENTARY INFORMATION: Supplementary data are available at: http://dsplab.eng.umd.edu/~genomics/syn/
Keywords:
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号