首页 | 本学科首页   官方微博 | 高级检索  
     


Phenotypic variation and spatial structure of secondary chemistry in a natural population of a tropical tree species
Authors:Tania Brenes-Arguedas   Phyllis D. Coley
Abstract:To understand herbivore selection in natural plant populations, it is important to understand the landscape of plant chemical phenotypes that herbivores face and the sources of variation that will define this landscape. We studied the spatial patterns of variation in leaf secondary chemistry of the tropical tree Quararibea asterolepis , Pitt. (Bombacaceae) in a natural population on Barro Colorado Island, Panama, and used this background to discuss hypotheses of natural selection by herbivores. Quararibea plants collected from different sites had consistent differences in their chemical phenotypes. Some of these differences were explained by developmental and environmental sources of variation. Canopy trees had 13% lower yield of leaf extracts than gap seedlings, explained by 41% lower concentrations of the more abundant metabolites in the secondary compound profile. Also, plants growing in gaps had 25% higher yield than those in the understory, explained by two-fold increases in the concentration of some of the less polar secondary compounds in the profile. Differences in soil type did not affect the secondary chemistry of leaves, but sites with different topography had differences in the secondary compound profile that were not explained by any of the measured environmental sources of variation. Neighboring parent-offspring pairs and sibling/half sibling clusters displayed equal or higher variance among themselves than unrelated individuals at farther distances. Assuming that related plants should be more similar in their phenotypes, this pattern is consistent with local selection by herbivores overriding the similarity of related plants in a frequency- or distance-dependent manner.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号