首页 | 本学科首页   官方微博 | 高级检索  
     


Capacities and constraints of amino acid utilization in Arabidopsis
Authors:Forsum Oskar  Svennerstam Henrik  Ganeteg Ulrika  Näsholm Torgny
Affiliation:UmeåPlant Science Centre, Department or Forest Genetics and Plant Physiology and;Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
Abstract:Various amino acids, including both L- and D-enantiomers, may be present in soils, and recent studies have indicated that plants may access such nitrogen (N) forms. Here, the capacity of Arabidopsis to utilize different L- and D-amino acids is investigated and the constraints on this process are explored. Mutants defective in the lysine histidine transporter 1 (LHT1) and transgenic plants overexpressing LHT1 as well as plants expressing D-amino acid-metabolizing enzymes, were used in studies of uptake and growth on various N forms. Arabidopsis absorbed all tested N-forms, but D-enantiomers at lower rates than L-forms. Several L- but no D-forms were effective as N sources. Plants deficient in LHT1 displayed strong growth reductions and plants overexpressing LHT1 showed strong growth enhancement when N was supplied as amino acids, in particular when these were supplied at low concentrations. Several D- amino acids inhibited growth of wild-type plants, while transgenic Arabidopsis-expressing genes encoding D-amino acid-metabolizing enzymes could efficiently utilize such compounds for growth. These results suggest that several amino acids, and in particular L-Gln and L-Asn, promote growth of Arabidopsis, and increased expression of specific amino acid transporters enhances growth on amino acids. The efficiency by which transgenic plants exploit D-amino acids illustrates how plants can be engineered to utilize specific N sources otherwise inaccessible to them.
Keywords:D-amino acid    D-amino acid oxidase    D-serine dehydratase    growth    lysine histidine transporter 1    metabolism    nitrogen uptake
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号