Immunological discrimination between self and non-self by precursor depletion and memory accumulation |
| |
Authors: | R J de Boer P Hogeweg |
| |
Affiliation: | Bioinformatics Group, University of Utrecht, The Netherlands. |
| |
Abstract: | We study processes by which T-lymphocytes "learn" to discriminate "self" from "non-self". We show that intrinsic features of the T cell activation and proliferation process are sufficient to tolerize (self) reactive T-lymphocyte clones. Self vs non-self discrimination therefore develops without any down-regulatory (e.g. suppressive) interactions. T-lymphocyte clones will expand by proliferation only if the IL2 concentration is high enough to induce a proliferation rate larger than the rate of cell decay. This concentration is the proliferation threshold. Because effector T cells are short-lived the proliferation threshold must be quite high. Such high numbers of cells producing IL2 are achieved only when sufficient (memory) precursors are activated. Self and non-self antigens differ with respect the number of (memory) precursor cells they accumulate, as a result of two processes, i.e. precursor depletion and memory accumulation, and can thus be discriminated. Precursor depletion: the dynamics of long-lived precursors can cause tolerization. In neonatal circumstances precursor influx is still low, newborn cells reacting with self antigens are immediately activated, generating (few), i.e. fewer than the proliferation threshold, effectors that decay rapidly. Thus total lymphocyte numbers remain low, yielding self tolerance. Conversely, large doses of similar antigens introduced in mature systems push "their" lymphocyte clone over the proliferation threshold because a large (accumulated) precursor population is rapidly activated. Small doses are however low zone tolerized. Memory accumulation: peripheral T-lymphocyte populations in fact consist of a mixture of virgin precursors and memory cells. If the formation process of (long-lived) memory cells is taken into account and virgin precursors are made short-lived, the proliferation threshold again accounts for self non-self discrimination. Memory cells accumulate when antigenic restimulation is low; it is low when the antigen concentration and/or the antigen affinity is low. Therefore self antigens, which are present in relatively high concentrations, fail to accumulate high affinity memory cells, and are hence tolerated. Memory cells crossreacting to self antigens with low affinity, however accumulate neonatally, pushing those clones over the proliferation threshold whenever "their" high affinity antigen enters the immune system. Thus the model generates differences in the antigenicity (i.e. memory precursor frequency) of self and non-self.(ABSTRACT TRUNCATED AT 400 WORDS) |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|