Abstract: | A moleclar imprinting technique based on electrostatic and hydrogen bonding interactions was used to prepare polymers of high selectvity for the original print molecule (D or L form of an amino acid derivative). In the chromatographic mode ig enantioselectivity was observed, in particular for amino acid amides and basic amino acid esters. As indicated y he broad peaks obtained, the mass transfer, including the kinetics of the binding and dissociation process, was slow and appeared to be slower in systems where a higher number of interactions between the solute and the stationary phase could be expected. In such systems enhanced selectivity was observed. For polymers prepared at a lower temperature the mass transfer was more rapid and a higher selectivity was observed, wich allowed the separations to be performed at room temperature. A more rapid mass transfer and a higher selectivity could also be achieved by increasing the column temperature. Furthermore the polymers showed a high sample load capacity and a high stability, and the can easily be prepared. |