首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Near-infrared fluorescence imaging of CD13 receptor expression using a novel Cy5.5-labeled dimeric NGR peptide
Authors:Guoquan Li  Yan Xing  Jing Wang  Peter S Conti  Kai Chen
Institution:1. Department of Nuclear Medicine, Xijing Hospital, The Fourth Military Medical University, Xi’an, 710032, Shaanxi, China
2. Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC 103, Los Angeles, CA, 90033-9061, USA
Abstract:In this study, we synthesized a novel Cy5.5-labeled dimeric NGR peptide (Cy5.5-NGR2) via bioorthogonal click chemistry, and evaluated the utility of Cy5.5-NGR2 for near-infrared fluorescence imaging of CD13 receptor expression in vivo. The dimeric NGR peptide (NGR2) was conjugated with an alkyne-containing PEG unit followed by mixing with an azide-terminated Cy5.5 fluorophore (Cy5.5-N3) to afford Cy5.5-NGR2. The probe was subject to in vitro and in vivo evaluations. The bioorthogonal click chemistry provided a rapid conjugation of the alkyne-containing NGR2 with Cy5.5-N3 in a quantitative yield within 15 min. The laser confocal microscopy revealed that binding of Cy5.5-NGR2 to CD13 receptor is target-specific as demonstrated in CD13-positive HT-1080 cells, CD13-negative MCF-7 cells, and a blocking study in HT-1080 cells. For in vivo optical imaging, Cy5.5-NGR2 exhibited rapid HT-1080 tumor targeting at 0.5 h postinjection (pi), and highest tumor-to-background contrast at 2 h pi. The CD13-specific tumor accumulation of Cy5.5-NGR2 was accomplished by a blocking study with unlabeled NGR peptide in HT-1080 tumor bearing mice. The tumor-to-muscle ratio of Cy5.5-NGR2 at 2 h pi reached 2.65 ± 0.13 in the non-blocking group vs. 1.05 ± 0.06 in the blocking group. The results from ex vivo imaging were consistent with the in vivo findings. We concluded that Cy5.5-NGR2 constructed by bioorthogonal click chemistry is a promising molecular probe, not only allowing the NIR optical imaging of CD13 overexpressed tumors, but also having the potential to facilitate noninvasive monitoring of CD13-targeted tumor therapy.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号