首页 | 本学科首页   官方微博 | 高级检索  
     


Diversity of flavin-binding monooxygenase genes (almA) in marine bacteria capable of degradation long-chain alkanes
Authors:Wang Wanpeng  Shao Zongze
Affiliation:Key Laboratory of Marine Biogenetic Resources, The Third Institute of Oceanography, State of Oceanic Administration, Xiamen, China.
Abstract:Many bacteria have been reported as degraders of long-chain (LC) n-alkanes, but the mechanism is poorly understood. Flavin-binding monooxygenase (AlmA) was recently found to be involved in LC-alkane degradation in bacteria of the Acinetobacter and Alcanivorax genera. However, the diversity of this gene and the role it plays in other bacteria remains unclear. In this study, we surveyed the diversity of almA in marine bacteria and in bacteria found in oil-enrichment communities. To identify the presence of this gene, a pair of degenerate PCR primers were was designed based on conserved motifs of the almA gene sequences in public databases. Using this approach, we identified diverse almA genes in the hydrocarbon-degrading bacteria and in bacterial communities from the surface seawater of the Xiamen coastal area, the South China Sea, the Indian Ocean, and the Atlantic Ocean. As a result, almA was positively detected in 35 isolates belonging to four genera, and a total of 39 different almA sequences were obtained. Five isolates were confirmed to harbor two to three almA genes. From the Xiamen coastal area and the Atlantic Ocean oil-enrichment communities, a total of 60 different almA sequences were obtained. These sequences mainly formed two clusters in the phylogenetic tree, named Class I and Class II, and these shared 45-56% identity at the amino acid level. Class I contained 11 sequences from bacteria represented by the Salinisphaera and Parvibaculum genera. Class II was larger and more diverse, and it was composed of 88 sequences from Proteobacteria, Gram-negative bacteria, and the enriched bacterial communities. These communities were represented by the Alcanivorax and Marinobacter genera, which are the two most popular genera hosting the almA gene. AlmA was also detected across a wide geographical range, as determined by the origin of the bacterial host. Our results demonstrate the diversity of almA and confirm its high rate of occurrence in hydrocarbon-degrading bacteria, indicating that this gene plays an important role in the degradation of LC alkanes in marine environments.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号