首页 | 本学科首页   官方微博 | 高级检索  
     


The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae
Authors:Jeppsson Marie  Bengtsson Oskar  Franke Katja  Lee Hung  Hahn-Hägerdal Bärbel  Gorwa-Grauslund Marie F
Affiliation:Department of Applied Microbiology, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
Abstract:Xylose fermentation by Saccharomyces cerevisiae requires the introduction of a xylose pathway, either similar to that found in the natural xylose-utilizing yeasts Pichia stipitis and Candida shehatae or similar to the bacterial pathway. The use of NAD(P)H-dependent XR and NAD(+)-dependent XDH from P. stipitis creates a cofactor imbalance resulting in xylitol formation. The effect of replacing the native P. stipitis XR with a mutated XR with increased K(M) for NADPH was investigated for xylose fermentation to ethanol by recombinant S. cerevisiae strains. Enhanced ethanol yields accompanied by decreased xylitol yields were obtained in strains carrying the mutated XR. Flux analysis showed that strains harboring the mutated XR utilized a larger fraction of NADH for xylose reduction. The overproduction of the mutated XR resulted in an ethanol yield of 0.40 g per gram of sugar and a xylose consumption rate of 0.16 g per gram of biomass per hour in chemostat culture (0.06/h) with 10 g/L glucose and 10 g/L xylose as carbon source.
Keywords:xylose reductase  Saccharomyces cerevisiae  site‐specific mutagenesis  xylitol  NAD(P)H
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号