首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Control of membrane potential and excitability ofChara cells with ATP and Mg2+
Authors:Teruo Shimmen  Masashi Tazawa
Institution:(1) Department of Biology, Faculty of Science, Osaka University, 560 Toyonaka, Osaka, Japan
Abstract:Summmary Electric characteristics of internodalChara australis cells, from which the tonoplast had been removed by vacuolar perfusion with media containing EGTA, were studied in relation to intracellular concentrations of ATP and Mg2+ using the ordinary microelectrode method and the open-vacuole method developed by Tazawa, Kikuyama and Nakagawa (1975.Plant Cell Physiol. 16:611). The concentration of ATP was decreased by introducing hexokinase and glucose into the cell and that of Mg2+ by introducing EDTA or CyDTA. The membrane potential decrease and the membrane resistance increase were both significant when the ATP or Mg2+ concentration was decreased. An ATP-dependent membrane potential was also found in other species of Characeae,Nitella axillaris andN. pulchella. Excitability of the membrane was also completely lost by reducing the ATP or Mg2+ concentration. Both membrane potential and excitability were recovered by introducing ATP or Mg2+ into ATP- or Mg2+-depleted cells.The time course of membrane potential recovery was followed by the open-vacuole method. Recovery began as soon as intracellular perfusion with medium containing ATP and Mg2+ was started. Reversible transition of the membrane potential between polarized and pepolarized levels by controlling the intracellular concentration of ATP or Mg2+ could be repeated many times by the open-vacuole method, when the excitability was suppressed by addition of Pb2+ to the external medium.The ineffectiveness of an ATP analog, AMP-PNP, and the synergism of ATP and Mg2+ in maintaining the membrane potential and excitability strongly suggest that ATP act via its hydrolysis by Mg2+-activated ATPase. The passive nature of the membrane, as judged from responses of the membrane potential to changes of the external K+ concentration, was not altered by lowering the ATP concentration in the cell. The mechanism of membrane potential generation dependent on ATP is discussed on the basic of an electrogenic ion pump. Involvement of the membrane potential generated by the ion pump in the action potential is also discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号