首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Pyridine-containing 6-hydrazinonicotinamide derivatives as potential bifunctional chelators for 99mTc-labeling of small biomolecules
Authors:Purohit Ajay  Liu Shuang  Ellars Charlie E  Casebier Dave  Haber Stephen B  Edwards D Scott
Institution:Discovery Chemistry, Bristol-Myers Squibb Medical Imaging, 331 Treble Cove Road, North Billerica, Massachusetts 01862, USA.
Abstract:As a continuation of our interest in novel 99mTc chelating systems, several pyridine-containing HYNIC (6-hydrazinonicotinamide) derivatives (L1-L5) have been synthesized and characterized by NMR (1H and 13C) and LC-MS. 99mTc complexes of L1-L5 were prepared by the reaction of the HYNIC derivative with 99mTcO4- in the presence of excess tricine and stannous chloride. Results from this study show that the attachment site of the linker is critical for the formation of macrocyclic 99mTc complexes. For example, the pyridine-N in L3 is not able to bond to the Tc, because the lysine linker is attached to the 4-position. When the linker is at the 2-position, L1 forms the macrocyclic complex 99mTc(L1)(tricine)], but the radiochemical purity is relatively low. If the linker is attached to the 3-position of the pyridine ring, the HYNIC derivatives form macrocyclic complexes 99mTc(L)(tricine)] (L2, L4, and L5) in high yield (>95%). The HPLC data suggest that the macrocyclic complex (99m)Tc(L2)(tricine)] exists in solution as four isomers: two diastereomers and two conformational isomers. Diastereomers are due to a combination of the chirality of the lysine linker and of the Tc chelate. Replacing lysine with a pentamethylenediamine linker results in the macrocyclic complex 99mTc(L4)(tricine)] with two conformational isomers, which interconvert rapidly at room temperature. Changing the linker from pentamethylenediamine to hexamethylenediamine did not eliminate the minor isomer; but the percentage of the minor isomer was reduced from approximately 10% for 99mTc(L4)(tricine)] to only 6% for 99mTc(L5)(tricine)]. The linker length is an important parameter to minimize the minor isomer. LC-MS data of complexes 99mTc(L)(tricine)] (L2, L4, and L5) are completely consistent with their proposed compositions. On the basis of these data, it is concluded that pyridine-containing HYNIC derivatives have the potential as bifunctional chelators for 99mTc-labeling of small biomolecules if the linker is attached to the 3-position of the pyridine ring.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号