Catabolite repression of the H(+)-translocating ATPase in Vibrio parahaemolyticus. |
| |
Authors: | Y Sakai-Tomita C Moritani H Kanazawa M Tsuda T Tsuchiya |
| |
Affiliation: | Department of Microbiology, Faculty of Pharmaceutical Sciences, Okayama University, Japan. |
| |
Abstract: | Cells of Vibrio parahaemolyticus grown in the presence of glucose showed reduced (by about 40%) oxidative phosphorylation. With this observation as a basis, we examined the effect of glucose on the level of H(+)-translocating ATPase. The addition of glucose to the growth medium reduced the specific activity and the amount of the H(+)-translocating ATPase in membrane vesicles of V. parahaemolyticus. These reductions were reversed by adding cyclic AMP (cAMP) to the growth medium. We cloned some parts of the unc genes encoding subunits of the H(+)-translocating ATPase of V. parahaemolyticus by means of the polymerase chain reaction. Using an amplified DNA fragment, we carried out Northern (RNA) blot analysis and found that glucose reduced the mRNA level of the H(+)-translocating ATPase gene by about 40% and that cAMP restored it. We determined the DNA sequence of the unc promoter region of V. parahaemolyticus and found a consensus sequence for the cAMP receptor protein-cAMP-binding site. Such a sequence was also found in the promoter region of the unc operon of Vibrio alginolyticus but not in its counterpart in Escherichia coli. We observed a similar reduction in the level of ATPase due to glucose in V. alginolyticus. In E. coli, however, reductions in the ATPase and the unc mRNA levels were not observed. Thus, the unc operon is controlled by cAMP-regulated catabolite repression in V. parahaemolyticus and V. alginolyticus but not in E. coli. Catabolite repression of the unc operon in V. parahaemolyticus is not severe. |
| |
Keywords: | |
|
|