首页 | 本学科首页   官方微博 | 高级检索  
   检索      


ClipKIT: A multiple sequence alignment trimming software for accurate phylogenomic inference
Authors:Jacob L Steenwyk  Thomas J Buida  III  Yuanning Li  Xing-Xing Shen  Antonis Rokas
Institution:1. Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America;2. Nashville, Tennessee, United States of America;3. Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China;Universitet i Bergen, NORWAY
Abstract:Highly divergent sites in multiple sequence alignments (MSAs), which can stem from erroneous inference of homology and saturation of substitutions, are thought to negatively impact phylogenetic inference. Thus, several different trimming strategies have been developed for identifying and removing these sites prior to phylogenetic inference. However, a recent study reported that doing so can worsen inference, underscoring the need for alternative alignment trimming strategies. Here, we introduce ClipKIT, an alignment trimming software that, rather than identifying and removing putatively phylogenetically uninformative sites, instead aims to identify and retain parsimony-informative sites, which are known to be phylogenetically informative. To test the efficacy of ClipKIT, we examined the accuracy and support of phylogenies inferred from 14 different alignment trimming strategies, including those implemented in ClipKIT, across nearly 140,000 alignments from a broad sampling of evolutionary histories. Phylogenies inferred from ClipKIT-trimmed alignments are accurate, robust, and time saving. Furthermore, ClipKIT consistently outperformed other trimming methods across diverse datasets, suggesting that strategies based on identifying and retaining parsimony-informative sites provide a robust framework for alignment trimming.

Highly divergent sites in multiple sequence alignments are thought to negatively impact phylogenetic inference; trimming methods aim to remove these sites, but recent analysis suggests that doing so can worsen inference. This study introduces ClipKIT, a trimming method that instead aims to retain parsimony-informative sites; phylogenetic inference using ClipKIT-trimmed alignments is accurate, robust and time-saving.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号