首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Comparative Studies of Fluorescence from Mesophyll and Guard Cell Chloroplasts in Saxifraga cernua: Analysis of Fluorescence Kinetics as a Function of Excitation Intensity
Authors:Mawson B T  Franklin A  Filion W G  Cummins W R
Institution:J. Tuzo Wilson Research Laboratories, Department of Botany, Erindale College, University of Toronto, Mississauga, Ontario, Canada L5L 1L6.
Abstract:The chlorophyll fluorescence induction curves from mesophyll and guard cell chloroplasts of Saxifraga cernua, including both the fast (O to P, the transients involved in the rise in variable fluorescence) and slow (P to steady state fluorescence due to quenching) components, were characterized over a range of excitation intensities using microspectrophotometry (with epi-lumination) equipped with apertures designed to eliminate cross contamination of the fluorescence signal between the two chloroplast types. At low excitation intensities, the fast fluorescence kinetics from guard cell plastids showed an extended I to D phase and a more rapid appearance of P while minimal quenching from P to steady state fluorescence was observed compared to the transients from mesophyll chloroplasts suggesting a lower activity of photochemical (electron movement via carriers between donor and acceptor sites) and nonphotochemical (such as membrane conformational changes) events which regulate the fluorescence induction curve kinetics. As the excitation intensity was increased, the quenching rates of guard cells were faster at initiating conditions for photophosphorylation and the fast and slow fluorescence kinetics from guard cells resembled those of the mesophyll cells.

Guard cell chloroplasts of S. cernua from intact epidermal peels showed a low temperature (77 K) fluorescence emission spectrum having three major peaks (at 685, 695, and 730 nanometers when excited at 440 nanometers) which were qualitatively similar to those in the spectrum obtained from mesophyll tissue.

These data suggest that S. cernua guard cell chloroplast photosystems I and II contribute to light-dependent stomatal activity only at high light intensities.

Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号