首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Iminodipropionitrile-Induced Dyskinesia in Mice: Striatal Calcium Channel Changes and Sensitivity to Calcium Channel Antagonists
Authors:Ramesh Bangalore  Mark Hawthorn  David J Triggle
Institution:Department of Biochemical Pharmacology, School of Pharmacy, State University of New York, Buffalo 14260.
Abstract:Administration of 3,3'-iminodipropionitrile (IDPN) (1 g/kg, i.p. for 3 days) in mice leads to the development of a characteristic syndrome consisting of lateral and vertical head and neck movements, hyperactivity, random circling, increased locomotor activity, and increased startle response. Nifedipine, verapamil, and diltiazem (10 mg/kg) inhibited significantly the symptoms of IDPN-induced dyskinesia. However, there was no change in the affinity (KD) or the density of PN 200-110 binding sites (Bmax) in whole brains of IDPN-treated mice. Similarly, the K(+)-depolarization-dependent Ca2+ uptake in synaptosomes from whole brain, cortex, or striatum was not altered following IDPN treatment. However, IDPN caused a significant increase in the Bmax value (from 157 +/- 7 fmol/mg to 237 +/- 31 fmol/mg in control and treated groups, respectively) of PN 200-110 binding to the striatum without change of KD value (38 +/- 4.7 pM versus 33 +/- 1.6 pM). IDPN also caused a slight but significant decrease in the KD value (from 68 +/- 10.1 pM to 45 +/- 4.5 pM in control and treated groups, respectively), without significant change of Bmax value (563 +/- 51 fmol/mg versus 485 +/- 41 fmol/mg) of PN 200-110 binding to the cortex. IDPN did not alter omega-conotoxin binding in whole brain, striatum, or cortex. The behavioral effects of chronic IDPN treatment as inhibited by L-type calcium channel antagonists and this may be associated with the observed increase in striatal L-type calcium channels.
Keywords:Iminodipropionitrile  Calcium channels  Nifedipine  Verapamil  Diltiazem  Striatum
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号