首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Kinetics of the structural transition of muscle thin filaments observed by fluorescence resonance energy transfer
Authors:Shitaka Yuji  Kimura Chieko  Iio Takayoshi  Miki Masao
Institution:Department of Applied Chemistry and Biotechnology, Fukui University, 3-9-1 Bunkyo, Fukui 910-8507, Japan.
Abstract:Fluorescence resonance energy transfer showed that troponin-I changes the position on an actin filament corresponding to three states (relaxed, closed, and open) of the thin filament (Hai et al. (2002) J. Biochem. 131, 407-418). In combination with the stopped-flow method, fluorescence resonance energy transfer between probes attached to position 1, 133, or 181 of troponin-I and Cys-374 of actin on reconstituted thin filaments was measured to follow the transition between three states of the thin filament. When the free Ca(2+) concentration was increased, the transition from relaxed to closed states occurred with a rate constant of approximately 500 s(-1). For the reverse transition, the rate constant was approximately 60 s(-1). When myosin subfragment-1 was dissociated from thin filaments in the presence of Ca(2+) by rapid mixing with ATP, the transition from open to closed states occurred with a single rate constant of approximately 300 s(-1). Light-scattering measurements showed that the ATP-induced myosin subfragment-1 dissociation occurred with a rate constant of approximately 900 s(-1). In the absence of Ca(2+), the transition from open to relaxed states occurred with two rate constants of approximately 400 and approximately 80 s(-1). These transition rates are fast enough to allow the spatial rearrangement of thin filaments to be involved in the regulation mechanism of muscle contraction.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号