首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Synchronous Ca(2+) oscillation emerges from voltage fluctuations of Ca(2+) stores
Authors:Yamashita Masayuki
Institution:Department of Physiology I, Nara Medical University, Kashihara, Japan. yama@naramed-u.ac.jp
Abstract:Synchronous Ca(2+) oscillation occurs in various cell types to regulate cellular functions. However, the mechanism for synchronization of Ca(2+) increases between cells remains unclear. Recently, synchronous oscillatory changes in the membrane potential of internal Ca(2+) stores were recorded using an organelle-specific voltage-sensitive dye Yamashita et al. (2006) FEBS J273, 3585-3597], and an electrical coupling model of the synchronization of store potentials and Ca(2+) releases has been proposed Yamashita (2006) FEBS Lett580, 4979-4983]. This model is based on capacitative coupling, by which transient voltage changes can be synchronized, but oscillatory slow potentials cannot be communicated. Another candidate mechanism is synchronization of action potentials and ensuing Ca(2+) influx through voltage-dependent Ca channels. The present study addresses the question of whether Ca(2+) increases are synchronized by action potentials, and how oscillatory store potentials are synchronized across the cells. Electrophysiological and Ca(2+)-sensitive fluorescence measurements in early embryonic chick retina showed that synchronous Ca(2+) oscillation was caused by releases of Ca(2+) from Ca(2+) stores without any evidence of action potentials in retinal neuroepithelial cells or newborn neurons. High-speed fluorescence measurement of store membrane potential surprisingly revealed that the synchronous oscillatory changes in the store potential were periodic repeats of a burst of high-frequency voltage fluctuations. The burst coincided with a Ca(2+) increase. The present study suggests that synchronization of Ca(2+) release is mediated by the high-frequency fluctuation in the store potential. Close apposition of the store membrane and plasma membrane in an epithelial structure would allow capacitative coupling across the cells.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号