首页 | 本学科首页   官方微博 | 高级检索  
     


A comparison of domperidone and haloperidol effects on different dopaminergic neurons in the rat brain
Authors:John M. Farah  Keith T. Demarest  Kenneth E. Moore
Affiliation:1. Department of Physiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA;2. Department of Pharmacology/Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
Abstract:Domperidone, a dopamine (DA) receptor antagonist with reportedly preferential actions outside of the blood-brain barrier, and haloperidol, a centrally active DA antagonist, were compared with respect to their abilities to increase the activity of dopaminergic neurons in the rat brain. The activity of nigrostriatal, mesolimbic, tuberohypophyseal and tuberoinfundibular dopamine nerves was estimated by measuring the in vivo rate of DA synthesis (dihydroxyphenylalanine accumulation following administration of an inhibitor of aromatic L-amino acid decarboxylase) in the striatum, olfactory tubercle, posterior pituitary and median eminence, respectively. In an initial study, the rates of DA synthesis in striatum, olfactory tubercle, and posterior pituitary were determined at 2, 8, and 16 h after subcutaneous administration of 0.25, 2.5, or 25 mg/kg domperidone. At the lowest dose of domperidone, DA synthesis was increased only in the posterior pituitary at 8 and 16 h; at the intermediate dose, DA synthesis increased in the posterior pituitary at 8 and 16 h and in the olfactory tubercle at 8 h. Only at 8 h after the highest dose of domperidone was DA synthesis increased in the striatum. When 2.5 mg/kg of doperidone or haloperidol were administered, DA synthesis in posterior pituitary and median eminence was increased in a similar fashion (in the latter region only at 16 h). In contrast, domperidone promoted only modest and delayed increases in DA synthesis in the olfactory tubercle and had no effect in the striatum. These results indicate that systemically administered domperidone preferentially increases DA synthesis in neurons terminating outside the blood-brain barrier, but after a pronounced delay, high doses of the drug can also activate DA neurons which project to the forebrain.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号