首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Fatty acid patterns of dog erythrocyte membranes after feeding of a fish-oil based DHA-rich supplement with a base diet low in n-3 fatty acids versus a diet containing added n-3 fatty acids
Authors:Katja Stoeckel  Leif Højvang Nielsen  Herbert Fuhrmann  Lisa Bachmann
Institution:1. Biochemistry Department, Institute of General and Molecular Biology, Nicolaus Copernicus University, 7 Gagarina St, 87-100, Torun, Poland
2. Department of Swine Diseases, National Veterinary Research Institute, 57 Partyzantow Avenue, 24-100, Pulawy, Poland
3. Cell Biology Department, Institute of General and Molecular Biology, Nicolaus Copernicus University, 7 Gagarina St, 87-100, Torun, Poland
Abstract:

Background

Numerous signaling pathways function in the brain ventricular system, including the most important - GABAergic, glutaminergic and dopaminergic signaling. Purinergic signalization system - comprising nucleotide receptors, nucleotidases, ATP and adenosine and their degradation products - are also present in the brain. However, the precise role of nucleotide signalling pathway in the ventricular system has been not elucidated so far. The aim of our research was the identification of all three elements of purinergic signaling pathway in the porcine brain ventricular system.

Results

Besides nucleotide receptors on the ependymocytes surface, we studied purines and pyrimidines in the CSF, including mechanisms of nucleotide signaling in the swine model (Sus scrofa domestica). The results indicate presence of G proteins coupled P2Y receptors on ependymocytes and also P2X receptors engaged in fast signal transmission. Additionally we found in CSF nucleotides and adenosine in the concentration sufficient to P receptors activation. These extracellular nucleotides are metabolised by adenylate kinase and nucleotidases from at least two families: NTPDases and NPPases. A low activity of these nucleotide metabolising enzymes maintains nucleotides concentration in ventricular system in micromolar range. ATP is degraded into adenosine and inosine.

Conclusions

Our results confirm the thesis about cross-talking between brain and ventricular system functioning in physiological as well as pathological conditions. The close interaction of brain and ventricular system may elicit changes in qualitative and quantitative composition of purines and pyrimidines in CSF. These changes can be dependent on the physiological state of brain, including pathological processes in CNS.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号