首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of temperature on diphosphopyridine nucleotide-linked isocitrate dehydrogenase from bovine heart. Aspects of the kinetics, stability, and quarternary structure of the enzyme.
Authors:C C Fan  J P Lin  G W Plaut
Abstract:A temperature-dependent conformational change of the active DPN-linked isocitrate dehydrogenase was observed. When initial reaction kinetic data were examined between 35 and 5 degrees, the Hill number (n) varied from 2 at higher to n approaching unity at lower temperatures, with an inflection point at 17 degrees. The presence of manganous isocitrate in the incubation media shifted the transition temperature for enzyme inactivation by 5,5'-dithiobis(2-nitrobenzoate) from 8-16 degrees. These temperature-dependent transitions were paralleled by progressive changes in sedimentation velocities from s20, w of 10.4 at 25 degrees to 7.3 at 10 degrees as measured by active band centrifugation. The linear Arrhenius plot for apparent V max and the constancy of S0.5 for the substrate manganous isocitrate between 35 and 5 degrees suggest that this temperature-dependent conformational change may not be solely related to manganous isocitrate. Further indications of equilibria between different species of enzyme in solution and effects of substrates and cofactors on conformation came from studies of specific activity of enzyme diluted into buffers at 3 and 25 degrees. Dilution to concentrations between 10 and 25 mum enzyme resulted in relatively rapid protein concentration-dependent inactivation which could be prevented and fully reversed by manganous isocitrate. No further substantial inactivation was found subsequent to this phase at 25 degrees. Lowering the temperature of the dilution buffer to 3 degrees favored formation of enzyme species exhibiting a further time and pH-dependent loss of activity which became independent of protein concentration below 7 mum enzyme. The rate of cold inactivation was reduced by raising the ionic strength of the buffer and its progress could be arrested by manganous isocitrate; however, the substrate did not restore the original activity.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号