首页 | 本学科首页   官方微博 | 高级检索  
   检索      


An analysis of a dendritic neuron model with an active membrane site
Authors:Steven M Baer  Charles Tier
Institution:(1) Mathematical Research Branch NIADDK, National Institutes of Health, Building 31, Room 4B54, 20892 Bethesda, MD, USA;(2) Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, 60680 Chicago, IL, USA
Abstract:We formulate and analyze a mathematical model that couples an idealized dendrite to an active boundary site to investigate the nonlinear interaction between these passive and active membrane patches. The active site is represented mathematically as a nonlinear boundary condition to a passive cable equation in the form of a space-clamped FitzHugh-Nagumo (FHN) equation. We perform a bifurcation analysis for both steady and periodic perturbation at the active site. We first investigate the uncoupled space-clamped FHN equation alone and find that for periodic perturbation a transition from phase locked (periodic) to phase pulling (quasiperiodic) solutions exist. For the model coupling a passive cable with a FHN active site at the boundary, we show for steady perturbation that the interval for repetitive firing is a subset of the interval for the space-clamped case and shrinks to zero for strong coupling. The firing rate at the active site decreases as the coupling strength increases. For periodic perturbation we show that the transition from phase locked to phase pulling solutions is also dependent on the coupling strength.This work was supported in part by NSF Grants MCS 83-00562 and MDS 85-01535
Keywords:Threshold  Dendrite  Cable theory  Resonance  Bifurcation theory
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号