首页 | 本学科首页   官方微博 | 高级检索  
     


Tracing Consumer-Derived Nitrogen in Riverine Food Webs
Authors:Carla L. Atkinson  Jeffrey F. Kelly  Caryn C. Vaughn
Affiliation:1. Oklahoma Biological Survey, Department of Biology & Ecology and Evolutionary Biology Graduate Program, University of Oklahoma, 111 E. Chesapeake St., Norman, Oklahoma, 73019, USA
Abstract:The flux of consumer-derived nutrients is recognized as an important ecosystem process, yet few studies have quantified the impact of these fluxes on freshwater ecosystems. The high abundance of bivalves in both marine and freshwater suggests that bivalves can exert large effects on aquatic food webs. The objective of our study was to determine the importance of unionid mussel-derived nitrogen (MDN) to the food web. We used a stable isotope tracer approach in conjunction with nutrient uptake and excretion experiments. We fed mussels (Lampsilis siliquiodea, n = 249) a 15N-enriched algal diet and placed them into a N-limited stream for 63 days. Mussel hemolymph was non-lethally sampled over the course of the experiment to measure tissue turnover of δ15N and excretion experiments were done to model the amount of N mussels provided in comparison to stream N uptake demand. Multiple food web pools were sampled twice prior and five times following the mussel addition to trace the 15N through the food web. Our mussel excretion rates in comparison to areal uptake demand suggested that mussel excretion can account for 40% of the total N demand in this stream. Our enrichment showed that MDN was entering the food web and supplied up to 19% of the N in specific compartments of the food web near the mussel bed. When scaled to a natural mussel aggregation, our results suggest up to 74% of N in the food web may be mussel-derived. Our results show that N supplied by mussels can be an important nutrient subsidy that provides food web support.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号