首页 | 本学科首页   官方微博 | 高级检索  
     


Crystal structure of a CRISP family Ca2+ -channel blocker derived from snake venom
Authors:Shikamoto Yasuo  Suto Kyoko  Yamazaki Yasuo  Morita Takashi  Mizuno Hiroshi
Affiliation:Department of Biochemistry, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan.
Abstract:The cysteine-rich secretory proteins (CRISPs) are widely distributed in mammals, reptiles, amphibians and secernenteas, and are involved in a variety of biological reactions. Here we report the crystal structure of triflin, a snake venom derived blocker of high K(+)-induced artery contraction, at 2.4A resolution. Triflin consists of two domains. The first 163 residues form a large globular body with an alpha-beta-alpha sandwich core, which resembles pathogenesis-related proteins of group-1 (PR-1). Two glutamic acid-associated histidine residues are located in an elongated cleft. A Cd(2+) resides in this binding site, and forms a five-coordination sphere. The subsequent cysteine-rich domain adopts a rod-like shape, which is stabilized by five disulfide bridges. Hydrophobic residues, which may obstruct the target ion-channel, are exposed to the solvent. A concave surface, which is surrounded by these two domains, is also expected to play a significant role in the binding to the target receptor, leading to ion channel blockage. The C-terminal cysteine-rich region has a similar tertiary structure to voltage-gated potassium channel blocker toxins, such as BgK and ShK. These findings will contribute toward understanding the functions of the widely distributed CRISP family proteins.
Keywords:CRISP   trifling   crystal structure   Ca2+ channel blocker   snake venom
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号