首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Shape and subunit organisation of the DNA methyltransferase M.AhdI by small-angle neutron scattering
Authors:Callow P  Sukhodub A  Taylor J E  Kneale G G
Institution:EPSAM and ISTM Research Institutes, Keele University, Staffordshire ST5 5BG, UK.
Abstract:Type I restriction-modification (R-M) systems encode multisubunit/multidomain enzymes. Two genes (M and S) are required to form the methyltransferase (MTase) that methylates a specific base within the recognition sequence and protects DNA from cleavage by the endonuclease. The DNA methyltransferase M.AhdI is a 170 kDa tetramer with the stoichiometry M(2)S(2) and has properties typical of a type I MTase. The M.AhdI enzyme has been prepared with deuterated S subunits, to allow contrast variation using small-angle neutron scattering (SANS) methods. The SANS data were collected in a number of (1)H:(2)H solvent contrasts to allow matching of one or other of the subunits in the multisubunit enzyme. The radius of gyration (R(g)) and maximum dimensions (D(max)) of the M subunits in situ in the multisubunit enzyme (50 A and 190 A, respectively) are close of those of the entire MTase (51 A and 190 A). In contrast, the S subunits in situ have experimentally determined values of R(g)=35 A and D(max)=110 A, indicating their more central location in the enzyme. Ab initio reconstruction methods yield a low-resolution structural model of the shape and subunit organization of M.AhdI, in which the Z-shaped structure of the S subunit dimer can be discerned. In contrast, the M subunits form a much more elongated and extended structure. The core of the MTase comprises the two S subunits and the globular regions of the two M subunits, with the extended portion of the M subunits most probably forming highly mobile regions at the outer extremities, which collapse around the DNA when the MTase binds.
Keywords:R-M  restriction-modification  MTase  methyltransferase  TRD  target recognition domain  SAXS  small-angle X-ray scattering  SANS  small-angle neutron scattering
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号