首页 | 本学科首页   官方微博 | 高级检索  
     


Aspartic acid 85 in bacteriorhodopsin functions both as proton acceptor and negative counterion to the Schiff base.
Authors:S Subramaniam  D A Greenhalgh  H G Khorana
Affiliation:Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.
Abstract:In bacteriorhodopsin Asp85 has been proposed to function both as a negative counterion to the Schiff base and as proton acceptor in the early stages of the photocycle. To test this proposal further, we have replaced Asp85 by His. The rationale for this replacement is that although His can function as a proton acceptor, it cannot provide a negative charge at residue 85 to serve as a counterion to the protonated Schiff base. We show here that the absorption spectrum of the D85H mutant is highly sensitive to the pH of the external medium. From spectroscopic titrations, we have determined the apparent pK for deprotonation of the Schiff base to be 8.8 +/- 0.1 and the apparent pK for protonation of the His85 side chain to be approximately 3.5. Between pH 3.5 and 8.8, where the Schiff base is protonated, and the His side chain is deprotonated, the D85H mutant is completely inactive in proton transport. Time-resolved studies show that there is no detectable formation of an M-like intermediate in the photocycle of the D85H mutant. These experiments show that the presence of a neutral proton-accepting moiety at residue 85 is not sufficient for carrying out light-driven proton transport. The requirements at residue 85 are therefore for a group that serves both as a negatively charged counterion and as a proton acceptor.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号