首页 | 本学科首页   官方微博 | 高级检索  
     


Impact of hydrology on the chemistry and phytoplankton development in floodplain lakes along the Lower Rhine and Meuse
Authors:F. W. B. Van den Brink  J. P. H. M. De Leeuw  G. Van Der Velde  G. M. Verheggen
Affiliation:(1) Laboratory of Aquatic Ecology, Faculty of Sciences, Catholic University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands
Abstract:The impact of hydrology (floods, seepage) on the chemistry of water and sediment in floodplain lakes was studied by a multivariate analysis (PCA) of physico-chemical parameters in 100 lakes within the floodplains in the lower reaches of the rivers Rhine and Meuse. In addition, seasonal fluctuations in water chemistry and chlorophyll-a development in the main channel of the Lower Rhine and five floodplain lakes along a flooding gradient were monitored. The species composition of the summer phytoplankton in these lakes was studied as well.At present very high levels of chloride, sodium, sulphate, phosphate and nitrate are found in the main channels of the rivers Rhine and Meuse, resulting from industrial, agricultural and domestic sewage. Together with the actual concentrations of major ions and nutrients in the main channel, the annual flood duration determines the physico-chemistry of the floodplain lakes. The river water influences the water chemistry of these lakes not only via inundations, but also via seepage. A comparison of recent and historical chemical data shows an increase over the years in the levels of chloride both in the main channel of the Lower Rhine and in seepage lakes along this river. Levels of alkalinity in floodplain lakes showed an inverse relationship with annual flood duration, because sulphur retention and alkalinization occurred in seepage waters and rarely-flooded lakes. The input of large quantities of nutrients (N, P) from the main channel has resulted, especially in frequently flooded lakes, in an increase in algal biomass and a shift in phytoplankton composition from a diatom dominated community towards a community dominated by chlorophytes and cyanobacteria.
Keywords:chemistry  eutrophication  floodplain lakes  inundation  large rivers  phytoplankton  seepage
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号