首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of changes in the viscosity of lipid membranes with the molecular rotor FCVJ
Authors:Matthew E. Nipper  Michael Mayer  James C.-M. Lee  Mark A. Haidekker
Affiliation:a University of Missouri-Columbia, Department of Biological Engineering, Columbia, MO 65211, USA
b University of Michigan, Department of Biomedical Engineering, Ann Arbor, MI 48109-2136, USA
c University of Michigan, Department of Chemical Engineering, Ann Arbor, MI 48109-2136, USA
d University of California, San Diego, Department of Chemistry and Biochemistry, La Jolla, CA 92093-0358, USA
Abstract:Membrane viscosity is a key parameter in cell physiology, cell function, and cell signaling. The most common methods to measure changes in membrane viscosity are fluorescence recovery after photobleaching (FRAP) and fluorescence anisotropy. Recent interest in a group of viscosity sensitive fluorophores, termed molecular rotors, led to the development of the highly membrane-compatible (2-carboxy-2-cyanovinyl)-julolidine farnesyl ester (FCVJ). The purpose of this study is to examine the fluorescent behavior of FCVJ in model membranes exposed to various agents of known influence on membrane viscosity, such as alcohols, dimethyl sulfoxide (DMSO), cyclohexane, cholesterol, and nimesulide. The influence of key agents (propanol and cholesterol) was also examined using FRAP, and backcalculated viscosity change from FCVJ and FRAP was correlated. A decrease of FCVJ emission was found with alcohol treatment (with a strong dependency on the chain length and concentration), DMSO, and cyclohexane, whereas cholesterol and nimesulide led to increased FCVJ emission. With the exception of nimesulide, FCVJ intensity changes were consistent with expected changes in membrane viscosity. A comparison of viscosity changes computed from FRAP and FCVJ led to a very good correlation between the two experimental methods. Since molecular rotors, including FCVJ, allow for extremely easy experimental methods, fast response time, and high spatial resolution, this study indicates that FCVJ may be used to quantitatively determine viscosity changes in phospholipid bilayers.
Keywords:Viscosity   Fluidity   FRAP   Molecular rotor   Alcohol   Cholesterol   Fluorescence
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号