首页 | 本学科首页   官方微博 | 高级检索  
     


Replication protein A directs loading of the DNA damage checkpoint clamp to 5'-DNA junctions
Authors:Majka Jerzy  Binz Sara K  Wold Marc S  Burgers Peter M J
Affiliation:Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
Abstract:The heterotrimeric checkpoint clamp comprises the Saccharomyces cerevisiae Rad17, Mec3, and Ddc1 subunits (Rad17/3/1, the 9-1-1 complex in humans). This DNA damage response factor is loaded onto DNA by the Rad24-RFC (replication factor C-like complex with Rad24) clamp loader and ATP. Although Rad24-RFC alone does not bind to naked partial double-stranded DNA, coating of the single strand with single-stranded DNA-binding protein RPA (replication protein A) causes binding of Rad24-RFC via interactions with RPA. However, RPA-mediated binding is abrogated when the DNA is coated with RPA containing a rpa1-K45E (rfa1-t11) mutation. These properties allowed us to determine the role of RPA in clamp-loading specificity. The Rad17/3/1 clamp is loaded with comparable efficiency onto naked primer/template DNA with either a 3'-junction or a 5'-junction. Remarkably, when the DNA was coated with RPA, loading of Rad17/3/1 at 3'-junctions was completely inhibited, thereby providing specificity to loading at 5'-junctions. However, Rad17/3/1 loaded at 5'-junctions can slide across double-stranded DNA to nearby 3'-junctions and thereby affect the activity of proteins that act at 3'-termini. These studies show a unique specificity of the checkpoint loader for 5'-junctions of RPA-coated DNA. The implications of this specificity for checkpoint function are discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号