首页 | 本学科首页   官方微博 | 高级检索  
     


Prediction of volatile anesthetic binding sites in proteins
Authors:Streiff John H  Allen Thomas W  Atanasova Elena  Juranic Nenad  Macura Slobodan  Penheiter Alan R  Jones Keith A
Affiliation:Departments of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, Mayo College of Medicine, Rochester, Minnesota, USA. streiff.john@mayo.edu
Abstract:Computational methods designed to predict and visualize ligand protein binding interactions were used to characterize volatile anesthetic (VA) binding sites and unoccupied pockets within the known structures of VAs bound to serum albumin, luciferase, and apoferritin. We found that both the number of protein atoms and methyl hydrogen, which are within approximately 8 A of a potential ligand binding site, are significantly greater in protein pockets where VAs bind. This computational approach was applied to structures of calmodulin (CaM), which have not been determined in complex with a VA. It predicted that VAs bind to [Ca(2+)](4)-CaM, but not to apo-CaM, which we confirmed with isothermal titration calorimetry. The VA binding sites predicted for the structures of [Ca(2+)](4)-CaM are located in hydrophobic pockets that form when the Ca(2+) binding sites in CaM are saturated. The binding of VAs to these hydrophobic pockets is supported by evidence that halothane predominantly makes contact with aliphatic resonances in [Ca(2+)](4)-CaM (nuclear Overhauser effect) and increases the Ca(2+) affinity of CaM (fluorescence spectroscopy). Our computational analysis and experiments indicate that binding of VA to proteins is consistent with the hydrophobic effect and the Meyer-Overton rule.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号