首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Diversion of the metabolic flux from pyruvate dehydrogenase to pyruvate oxidase decreases oxidative stress during glucose metabolism in nongrowing Escherichia coli cells incubated under aerobic, phosphate starvation conditions
Authors:Moreau Patrice L
Institution:Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne, 31 Chemin J. Aiguier, 13009 Marseille, France. moreau@ibsm.cnrs-mrs.fr
Abstract:Ongoing aerobic metabolism in nongrowing cells may generate oxidative stress. It is shown here that the levels of thiobarbituric acid-reactive substances (TBARSs), which measure fragmentation products of oxidized molecules, increased strongly at the onset of starvation for phosphate (P(i)). This increase in TBARS levels required the activity of the histone-like nucleoid-structuring (H-NS) protein. TBARS levels weakly increased further in DeltaahpCF mutants deficient in alkyl hydroperoxide reductase (AHP) activity during prolonged metabolism of glucose to acetate. Inactivation of pyruvate oxidase (PoxB) activity decreased the production of acetate by half and significantly increased the production of TBARS. Overall, these data suggest that during incubation under aerobic, P(i) starvation conditions, metabolic flux is diverted from the pyruvate dehydrogenase (PDH) complex (NAD dependent) to PoxB (NAD independent). This shift may decrease the production of NADH and in turn the adventitious production of H(2)O(2) by NADH dehydrogenase in the respiratory chain. The residual low levels of H(2)O(2) produced during prolonged incubation can be scavenged efficiently by AHP. However, high levels of H(2)O(2) may be reached transiently at the onset of stationary phase, primarily because H-NS may delay the metabolic shift from PDH to PoxB.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号