首页 | 本学科首页   官方微博 | 高级检索  
     


Salt-loading and simulated microgravity on baroreflex responsiveness in rats
Authors:Bayorh M A  Socci R R  Wang M  Emmett N  Thierry-Palmer M
Affiliation:Department of Pharmacology/Toxicology, Morehouse School of Medicine, Atlanta, GA, USA. bayorh@msm.edu
Abstract:Cardiovascular adaptations observed during exposure to microgravity results in impairment of baroreflex activity partially as a result of fluid and electrolyte shifts. The head-down tilt rat model mimics some of the physiological observations that have been made in astronauts. We examined the effects of salt-loading on baroreflex activity after 7 day simulated microgravity (30 degrees tail-suspension) and the subsequent 6 hr post-suspension in Sprague-Dawley (SD) rats, using low salt (0.3% NaCl) and high salt (8% NaCl) diets. In suspended animals on a low salt diet, the baroreflex response curve was shifted to the left, while the heart rate (HR) range and MAP50 values were reduced compared to their parallel tethered, non-suspended controls. For non-suspended animals, salt-loading shifted the curve to the right with a reduced HR range. In salt-loaded, suspended animals, the curve and its parameters resemble those of non-suspended animals on a low salt diet. In summary, these data have demonstrated that a short-term (seven days) simulated weightlessness may elicit cardiovascular deconditioning in rats after release from the simulation manifested as an altered responsiveness in baroreceptor-heart rate reflex and a lowered blood pressure while the rats are tethered and horizontal. Our results also suggest the counteracting effect of salt loading on cardiovascular deconditioning.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号