首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of glutamate on microbial efficiency and metabolism in continuous culture of ruminal contents and on performance of mid-lactation dairy cows
Authors:HM Dann  CS Ballard  RJ Grant  KW Cotanch  MP Carter  M Suekawa
Institution:

aWilliam H. Miner Agricultural Research Institute, Chazy, NY, USA

bZen-Noh National Federation of Agricultural Co-operative Associations, Tokyo, Japan

Abstract:Three experiments were conducted to determine (1) the dose of glutamate needed to alter fermentation and nitrogen (N) partitioning in a continuous culture system, (2) the effect of supplemental glutamate in diets varying in rumen-undegradable protein on fermentation and N partitioning in a continuous culture system, and (3) the effect of dietary supplemental glutamate on the lactational performance of mid-lactation dairy cows, total tract nutrient digestibility, and ruminal microbial N synthesis. In experiment 1, the equivalent of 0, 40, or 80 g of supplemental glutamate per cow per day was added to a basal diet. The dietary treatments were evaluated in a continuous culture system. Glutamate decreased protein digestion and microbial growth while increasing non-ammonia, non-microbial N. Within the doses tested, the equivalent of 80 g glutamate per cow per day most effectively increased non-ammonia, non-microbial N. In experiment 2, dietary treatments consisted of diets formulated to have low rumen-undegradable protein (LRUP; 62 g/kg DM), low rumen-undegradable protein plus the equivalent of 80 g glutamate per cow per day (LRUP + G), and high rumen-undegradable protein HRUP; 68 g/kg dry matter (DM)]. The dietary treatments were evaluated in a continuous culture system. When added to a diet low in rumen-undegradable protein, glutamate tended to decrease DM and organic matter (OM) digestibility, decreased total volatile fatty acid (VFA) production, increased fermenter pH, increased feed N converted to microbial N, and had no effect on microbial N production. The LRUP + G diet was similar to the HRUP diet and different from the LRUP diet in feed N converted to microbial N and ammonia N concentration. In experiment 3, 40 Holstein cows were utilized in a crossover study to test the effects of two dietary treatments: 0 or 80 g of supplemental glutamate per cow per day. The addition of glutamate to the diet of lactating dairy cows did not improve lactational performance or nutrient digestibility. Based on the results from these in vitro and in vivo experiments, the addition of glutamate to lactating cow diets is not recommended.
Keywords:Continuous culture  Dairy cow  Glutamate  Monosodium glutamate  Milk yield
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号