首页 | 本学科首页   官方微博 | 高级检索  
     


Photobrightening in Lead Halide Perovskites: Observations,Mechanisms, and Future Potential
Authors:Zahra Andaji‐Garmaroudi  Miguel Anaya  Andrew J. Pearson  Samuel D. Stranks
Abstract:There has been a meteoric rise in the commercial potential of lead halide perovskite optoelectronic devices since photovoltaic cells and light‐emitting diodes based on these materials were first demonstrated. One key challenge common to each of these optoelectronic devices is the need to suppress nonradiative recombination, a process that limits the maximum achievable efficiency in photovoltaic cells and light‐emitting diodes. In this Progress Report, recent studies that seek to minimize this loss pathway in perovskites through a photobrightening treatment, whereby the luminescence efficiency is enhanced through a light illumination passivation process are examined. The sensitivity of this effect to various experimental considerations is examined, including atmosphere, photon energy, photon dose, and also the role of perovskite composition and morphology; under certain conditions there can even be photodarkening effects. Consideration of these factors is critical to resolve seemingly conflicting literature reports. Proposed mechanisms are scrutinized, revealing that there is now some consensus but further work is needed to identify the specific defects being passivated and elucidate universal mechanisms. Finally, the prospects for these treatments to minimize halide migration and push the properties of polycrystalline films towards those of their single‐crystal counterparts are discussed.
Keywords:luminescence  passivation  perovskite  photobrightening  recombination
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号