首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Antioxidant levels from different Antarctic fish caught around South Georgia Island and Shag Rocks
Authors:Martín Ansaldo  Carlos M Luquet  Pablo A Evelson  José M Polo  Susana Llesuy
Institution:(1) Instituto Antártico Argentino, Cerrito 1248, (1010) Buenos Aires, Argentina e-mail: tincho@bg.fcen.uba.ar, AR;(2) Cátedra de Química General e Inorgánica, Departamento de Química Analítica y Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, (1113) Buenos Aires, Argentina, AR;(3) Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Laboratorio 24, Ciudad Universitaria, (1428) Buenos Aires, Argentina, AR
Abstract:Antarctic fish have been isolated for over several million years in an environment with a very low and constant temperature and high oxygen concentration. In such conditions the oxidative stress might be an important factor affecting their metabolic adaptive strategies. Activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), vitamin E levels and total antioxidant capacity (TRAP) were measured in liver, gill, heart and muscle homogenates of red-blooded (Nototheniidae) and white-blooded (Channichthyidae) Antarctic fish. SOD activity was also measured in blood samples. Gill SOD activity was threefold higher in channichthyids than in nototheniids while CAT and GPx were significantly higher in the gills of channichthyids. The increased SOD activity of channichthyids probably reflects the large PO2 gradient across their gills. The H2O2 produced seems to be preferentially eliminated by diffusion, according to the low levels of CAT and GPx found in the gills of these species. In contrast, blood SOD was about fivefold higher in the latter group, which possesses erythrocytes and thus a much higher oxygen-carrying capacity. CAT activity was always higher in nototheniids except in muscle. However, vitamin E did not show clear differences between families except for the pattern observed in muscle. The higher content of vitamin E in this tissue shown in channichthyids is related to the higher volume density of mitochondria reported for this group, since vitamin E is responsible for preventing membrane lipid peroxidation. Accordingly, TRAP (representative of hydrosoluble antioxidant capacity) was also higher in muscle of channichthyids. This is probably related to the role of ascorbic (a hydrosoluble compound) acid in regenerating vitamin E. Accepted: 4 September 1999
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号