首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Conservation of long-lived perennial forest herbs in an urban context: <Emphasis Type="Italic">Primula elatior</Emphasis> as study case
Authors:Fabienne Van Rossum
Institution:(1) Plant Biology and Nature Management, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium;(2) Present address: Department of Vascular Plants, National Botanic Garden of Belgium, Domein van Bouchout, 1860 Meise, Belgium
Abstract:Urban forests are generally fragmented in small isolated remnants, embedded in an inhospitable human-used matrix, and incur strong anthropogenic pressures (recreational activities, artificialization, pollution and eutrophication). These lead to particularly high constraints even for common forest herbs, whose genetic response may depend on life-history traits and population demographic status. This study investigated genetic variation and structure for 20 allozyme loci in 14 populations of Primula elatior, a self-incompatible long-lived perennial herb, occurring in forest fragments of Brussels urban zone (Belgium), in relation to population size and young plants recruitment rate. Urban populations of P. elatior were not genetically depauperate, but the small populations showed reduced allelic richness. Small populations showing high recruitment rates—and therefore potential rejuvenation—revealed lower genetic diversity (H o and H e) than those with low or no recruitment. No such pattern was observed for the large populations. There was a significant genetic differentiation among populations within forest fragments (F SC = 0.052, P < 0.001), but not between fragments (F CT = 0.002, P > 0.10). These findings suggest restricted gene flow among populations within fragments and local processes (genetic drift, inbreeding) affecting small populations, strengthened when there is recruitment. Urban forest populations of long-lived perennial herbs can be of conservation value. However, restoration of small populations by increasing population size through regeneration by seedling recruitment may lead to negative genetic consequences. Additional management, aiming to restore gene flow among populations, may need to be applied to compensate the loss of genetic diversity and to reduce inbreeding.
Keywords:Allozymes  Genetic erosion  Urban habitat fragmentation  Population size  Recruitment rate
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号