首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Microheterogeneity of N-glycosylation on a stylar self-incompatibility glycoprotein of Nicotiana alata
Authors:Oxley  David; Bacic  Antony
Institution:Plant Cell Biology Research Centre, School of Botany, University of Melbourne Parkville, Victoria 3052, Australia
Abstract:Gametophytic self-incompatibility, a mechanism that preventsinbreeding in some families of flowering plants, is mediatedby the products of a single genetic locus, the S-locus. Theproducts of the S-gene in the female sexual tissues of Nicotianaalata are an allelic series of glycoproteins with RNase activity.In this study, we report on the microheterogeneity of N-linkedglycosylation at the four potential N-glycosylation sites ofthe S2-glycoprotein. The S-glycoproteins from N.alata containfrom one to five potential N-glycosylation sites based on theconsensus sequence Asn-Xaa-Ser/Thr. The S2-glycoprotein containsfour potential N-glycosylation sites at Asn27, Asn37, Asn138and Asn150, designated sites I, n, IV and V, respectively. SiteIII is absent from the S2-glycoprotein. Analysis of glycopeptidesgenerated from the S2-glycoprotein by trypsin and chymotrypsindigestions revealed the types of glycans and the degree of microheterogeneitypresent at each site. Sites I (Asn27) and IV (Asn138) displaymicroheterogeneity, site II (Asn37) contains only a single typeof N-glycan, and site V (Asn150) is not glycosylated. The microheterogeneityobserved at site I on the S2-glycoprotein is the same as thatobserved at the only site, site I, on the Srglycoprotein (Woodwardet al., Glycobiology, 2, 241-250, 1992). Since the N-glycosylationconsensus sequence at site I is conserved in all S-glycoproteinsfrom other species of self-incompatible solanaceous plants,glycosylation at this site may be important to their function.No other post-translational modifications (e.g. O-glycosylation,phosphorylation) were detected on the S2-glycoprotein. fertilization microheterogeneity N-glycans plants RNase
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号