首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Nucleotide-binding oligomerization domain-containing protein 2 regulates suppressor of cytokine signaling 3 expression in Burkholderia pseudomallei-infected mouse macrophage cell line RAW 264.7
Authors:Pudla Matsayapan  Kananurak Anchasa  Limposuwan Kornkaew  Sirisinha Stitaya  Utaisincharoen Pongsak
Institution:Department of Microbiology, Mahidol University, Bangkok, Thailand.
Abstract:Burkholderia pseudomallei, a causative agent of melioidosis, is a facultative intracellular Gram-negative bacterium that can survive and multiply inside the macrophages. Toll-like receptors are one class of pattern recognition receptors (PRRs) that have been documented to play significant role in B. pseudomallei infection. In the present study, we investigated a potential role of nucleotide-binding oligomerization domain-containing protein 1 and 2 (NOD1 and NOD2), cytoplasmic pattern recognition receptors, in B. pseudomallei-infected mouse macrophage cell line RAW 264.7. Both live and heat-killed B. pseudomallei were able to up-regulate NOD1 and NOD2 expression in a time-dependent manner. Marked reduction of a negative regulator, suppressor of cytokine signaling 3 (SOCS3), expression was observed only in B. pseudomallei-infected NOD2-depleted macrophages and not in NOD1-depleted macrophages. The decrease in SOCS3 expression also led to an increase in IFN-γ responsiveness as judged by an enhanced STAT-1 phosphorylation on tyrosine 701 in the B. pseudomallei-infected macrophages. Together, these results suggested that, in addition to using other PRRs to evade macrophage defense, B. pseudomallei may also use NOD2 to regulate a negative regulator like SOCS3.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号